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Over the last couple of decades, a vast amount of
research has been dedicated to understanding the
nature and the architecture of visual short-term memory
(VSTM), the mechanism by which currently relevant
visual information is maintained. According to discrete-
capacity models, VSTM is constrained by a limited
number of discrete representations held simultaneously.
In contrast, shared-resource models regard VSTM as
limited in resources, which can be distributed flexibly
between varying numbers of representations; and a new
interference model posits that capacity is limited by
interference among items. In this article, we begin by
reviewing benchmark findings regarding the debate over
VSTM limitations, focusing on whether VSTM storage is
all-or-none and on whether object complexity affects
capacity. After that, we put forward a hybrid framework
of VSTM architecture, arguing that this system is
composed of a two-level hierarchy of memory stores,
each containing a different set of representations: (1)
perceptual memory, a resourcelike level containing
analog automatically formed representations of visual
stimuli in varying degrees of activation, and (2) visual
working memory, in which a subset of three to four
items from perceptual memory are bound to conceptual
representations and to their locations, thus conveying
discrete (digital/symbolic) information which appears
quantized. While perceptual memory has a large
capacity and is relatively nonselective, visual working
memory is restricted in the number of items that can be
maintained simultaneously, and its content is regulated
by a gating mechanism.

Introduction

The ability to maintain and manipulate representa-
tions of currently relevant information is supported by

a mental mechanism referred to as working memory
(WM; e.g., Baddeley, 1996; Cowan, 1988). In the past
two decades, much attention has been given to the
operation of WM in the visual modality—that is, the
maintenance and manipulation of visual information
(e.g., Luck & Vogel, 2013). A central debate regards the
nature of the constraints on maintenance of represen-
tations in visual WM. According to one side of the
debate—discrete-capacity models of visual WM (e.g.,
Rouder et al., 2008; Vogel, Woodman, & Luck,
2001)—capacity is limited in the number of items that
can be maintained simultaneously, which is typically
three or four items. Under this account, the precision of
memory representations is quantized, and therefore this
architecture is commonly conceptualized as slots. The
second stance in the debate is that precision of
maintained representations in visual WM is continuous
rather than discrete. According to one class of such
models—shared-resource models (e.g., Bays & Husain,
2008; Wilken & Ma, 2004)—visual WM is limited in
resources, which can be allocated and distributed
flexibly among a varying number of representations.
For example, a small number of representations can be
held with high precision, or conversely, a large number
of representations can be maintained with low preci-
sion. Recently, an interference account of WM has
been applied to visual memoranda (Oberauer & Lin,
2017), arguing that visual WM is constrained by
interference between maintained representations. Ac-
cording to this model, WM capacity is continuous (and
not quantized), but restrictions are due to increasing
cross talk between items and their bindings to contexts
rather than a result of resources allocation.

In this article, we argue for a hybrid framework that
can reconcile the two stances. We suggest that
performance in so-called visual WM tasks relies on two
separate sets of representations: perceptual memory
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(PM), which holds a variable number of representa-
tions whose strength varies on a continuum, and visual
WM itself, which—at least in many cases—appears
quantized. We propose that memory over the short
term does not necessarily depend on visual WM, but
can rather rely on lower and less selective structures.
Accordingly, it is important to distinguish between the
two in order to correctly attribute the empirical findings
in visual WM tasks to the cognitive construct that gives
rise to them. We argue that such a distinction between
PM and visual WM provides a simple yet powerful
solution to the debate over whether there is an item
limit to visual WM.

Our theoretical framework distinguishing between
WM and PM is not specific to the visual domain but is
rather a general distinction between automatically
activated memory traces outside WM and selected
representations inside WM (see Kessler, 2018; Rac-
Lubashevsky & Kessler, 2016a, 2016b). The goal of the
present article is to apply these ideas to the visual
domain and to suggest a synthesis of the literature on
this debate together with three other lines of research in
the study of WM—the embedded-components model
of WM (Cowan, 1999; Oberauer, 2002, 2009), the
notion of fragile visual short-term memory (Sligte,
Scholte, & Lamme, 2008), and gating models of
selection to WM (Braver & Cohen, 2000; Hazy, Frank,
& O’Reilly, 2006). We will begin by reviewing
benchmark findings regarding capacity limitations of
visual WM. Because a comprehensive review of this
vast literature is beyond the scope of this article, we will
focus only on the major findings and arguments
supporting each class of model. We will especially
highlight findings showing evidence for both quantized
and continuous capacity allocation within the same
task, which are mostly compatible with our framework.
Then we will introduce our two-level framework and
review evidence linking the two levels to discrete and
continuous limitations.

A note on terminology is required to avoid
confusion. Our notion of two levels of representation
implies that not every manifestation of memory over
the short term relies on working memory; memory also
takes place outside it. However, the term visual working
memory is frequently used in the literature to refer to
any memory phenomenon that takes place in the visual
domain across short time periods. Thus, we essentially
argue that not all aspects of visual WM tasks actually
rely on working memory. This, of course, might lead to
an undesired confusion between our framework and
previous work, and between the construct of working
memory (denoting a selective and limited set of
representations, as used, for example, in gating models;
e.g., Braver & Cohen, 2000; Hazy et al., 2006) and the
general ability to remember visual items over the short
term (as measured by visual WM tasks). To avoid

confusion, we will use the term visual short-term
memory (VSTM) to refer to the general ability to
remember visual information over several seconds,
which is measured by VSTM tasks. That is, VSTM
denotes the system as a whole, including both PM and
visual WM.

Is VSTM capacity quantized?
Overview of current stances in the
debate

Unlike our framework, performance in VSTM tasks
under slot, shared-resource, and interference models is
attributed to a single memory store, typically termed
WM. To be compatible with our definitions, we will
refer to it here as VSTM. According to discrete-
capacity models, VSTM encoding can be conceptual-
ized as an all-or-none, high-threshold process. VSTM is
limited in the number of representations that can be
maintained simultaneously, denoted K (Luck & Vogel,
2013). That is, VSTM has a capacity of K discrete
quanta, conceptualized as slots that can be filled with
representations of K visual items. In trying to maintain
visual arrays exceeding K items, only K will be stored
and retained; the rest will not be represented in short-
term visual memory. In contrast, shared-resource
models argue that VSTM is limited not in the number
of memory items but in the amount of resources that
can be distributed among them. These models suggest
that the amount of resources devoted to an item is
proportional to the precision with which the item is
retained. Consequently, the capacity limitation is
manifested in the precision of each memory represen-
tation (e.g., Bays & Husain, 2008; Ma, Husain, & Bays,
2014). For small set sizes, memory representations
would be quite precise, whereas the representation of
items within large memory arrays would be less
accurate. Building on signal-detection-theory accounts,
this property of VSTM is assumed to be a result of
random noise throughout sensory, maintenance, and
retrieval processing channels, all leading to an increase
in noise with set size (Ma et al., 2014; Wilken & Ma,
2004). Very recently, Oberauer and Lin (2017) have
introduced a new stance with regard to the debate over
the architecture of VSTM, arguing that VSTM is
limited by interference. According to this account, all
to-be-remembered items are represented in VSTM, and
performance at large set sizes is degraded because items
interfere with one another. This interference leads to
lowered precision and weak connections between items
and their locations (item-to-context binding, a notion
on which we will elaborate later). Furthermore, one
privileged item among VSTM representations, held in
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the focus of attention, is maintained with higher
precision compared to other items. Although different
from shared-resource models, the interference model
posits that VSTM precision is set on a continuum. In
this section, we briefly outline benchmark findings
regarding the question of whether VSTM storage is all-
or-none. For more extensive reviews, see Fukuda, Awh,
and Vogel (2010); Luck and Vogel (2013); and Ma et al.
(2014).

Before we continue, it is important to consider the
two common experimental paradigms utilized in the
study of VSTM capacity limitations. The first is the
change-detection task (e.g., Luck & Vogel, 1997; see
Figure 1A). In each trial, participants are presented
with a brief display containing several visual items and
are asked to remember these items. The number of to-
be-remembered items is commonly referred to as set
size. After a retention interval, participants are
presented with a test display and asked to indicate
whether it is the same or different compared to the
memory array. The test display could require either
comparison of all items (whole-display probe) or a
partial report regarding whether one item has changed
(single probe; Vogel et al., 2001).

The second paradigm is the delayed-estimation task
(Wilken & Ma, 2004; see Figure 1B), also commonly
referred to as the continuous-report task. The differ-
ence between delayed estimation and change detection
lies in the test probe: In the delayed-estimation task,
participants are asked to adjust the feature of a cued
item (e.g., choose its color on a color wheel, adjust the
orientation of a bar) according to their memory of that
item. This design enables estimation of recall proba-
bility (the probability that an item was represented in
VSTM) and precision of memory representations
(provided these items are represented), as well as swap
errors in which items’ features or locations are
intermixed (but see Schurgin, Wixted, & Brady, 2018,
for recent criticism regarding the validity of the linear

psychological interpretation of physical distances along
the response wheel).

Precision

One way to approach the question of whether VSTM
capacity is quantized is to test the effect of set size on
precision, using the delayed-estimation paradigm.
Zhang and Luck (2008) found that while recall
probability decreased as set size increased, precision
decreased between set sizes 1 and 3 but then reached a
plateau for set sizes exceeding K. Their model suggests
that there is a fixed upper limit of slots (K), and that
when fewer than K items are to be remembered, one
item can be represented in several slots (i.e., receive
several capacity quanta, a model they named ‘‘slots þ
averaging’’; see also Zhang & Luck, 2011). On the other
hand, Bays and Husain (2008) found a decrease in
precision as set size increased, with a large decline in
precision between set sizes of 1 and 2. In addition, in
that experiment there was no major decline in precision
following the K limit of four items. Thus, Bays and
Husain’s results are more in line with the notion of a
shared resource. According to Bays, Catalao, and
Husain (2009), the discrepancy between Zhang and
Luck’s results and those of Bays and Husain stems
from a misinterpretation of swap errors as random
noise in Zhang and Luck’s analysis. Conversely,
according to Cowan and Rouder (2009), Zhang and
Luck’s model has a similar (and even slightly better) fit
to Bays and Husain’s data compared to the fit of a
resource model. Recently, Adam, Vogel, and Awh
(2017) asked participants to reproduce all memory
items, and found that precision decreased systemati-
cally within a trial (i.e., the most precise representations
were reported first). When set size was supracapacity
(6), participants’ responses were best fit by a model
assuming that three responses were based on guesses.
The researchers interpreted this result as indicating that
only three items can be maintained in VSTM,

Figure 1. Examples of trials in (A) the change-detection paradigm and (B) the delayed-estimation paradigm.
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supporting discrete-capacity models (but for a criticism
of this conclusion, see Bays, 2018). On the other hand,
Bays (2018) examined whether the set size at which
precision and recall probability plateau coincide.
Contrary to predictions of discrete-capacity models,
these two capacity estimations were not correlated
across several studies, raising a new challenge for this
class of models. At any rate, this discussion should be
conducted while taking into account that the usefulness
of plateau statistics in model comparison has been
questioned by van den Berg and Ma (2014), who
argued that plateau statistics are highly unreliable.

Van den Berg, Awh, and Ma (2014) compared the fit
of several models to performance on the delayed-
estimation task across different studies, and found that
shared-resource models in which precision is variable
across items both within a given trial and across trials
in a given set size (e.g., Fougnie, Suchow, & Alvarez,
2012; Sims, Jacobs, & Knill, 2012; van den Berg, Shin,
Chou, George, & Ma, 2012) fit the accuracy data better
than the slotsþ averaging model (Zhang & Luck, 2008)
and the nonvariable version of shared-resource models
(e.g., Wilken & Ma, 2004). Furthermore, Oberauer and
Lin (2017) compared the fit of their interference model
with several variations of discrete-state models and
shared-resource models, including the variable-preci-
sion version of resource models. They found that their
model had the best fit to the data, supporting the
notion that VSTM is limited by interference and
contains a single-item focus of attention. However, it
should be noted that a model in which the interference
model was combined with an additional discrete-
capacity limit had a good fit as well, raising the
possibility that VSTM is limited by a combination of
interference and a single-item focus of attention,
together with an additional discrete item limit.

Modeling receiver operating characteristics (ROC) curves

Another way to approach the question is to examine
the shape of ROC curves of change-detection perfor-
mance. Linear ROC curves (for nonstandardized hit
and false-alarm rates) support high-threshold models,
while curvilinear curves support signal-detection mod-
els (e.g., Egan, 1975). Studies in which this methodol-
ogy was used have yielded conflicting results. For
example, Wilken and Ma (2004) used a variant of the
change-detection task in which participants were asked
to rate their confidence in the responses they made. The
researchers found nonlinear ROC curves and deter-
mined that detection-theory models with the assump-
tion of an increase in noise with set size had a better fit
compared to a high-threshold model, supporting the
resource stance. On the other hand, Rouder et al.
(2008; for a replication, see also Donkin, Tran, &
Nosofsky, 2014, experiments 1, 2, and 4) manipulated

change probabilities in a change-detection task and
found an opposite pattern of results, supporting slots
models: ROC curves were linear for each set size,
change probabilities affected guessing rates but not
capacity estimates, and a high-threshold model had a
better fit compared to a variable-capacity model and to
a signal-detection model assuming variability in the
strength of the representations.

According to Donkin, Kary, Tahir, and Taylor
(2016), participants can use either slotlike or resource-
like encoding strategies, depending on whether the
experimental conditions enable them to distribute
attention to all items in the memory array. For
example, they demonstrated that a slot model fits ROC
data when the set size varies (and is therefore
unpredictable). However, when the set size is fixed,
participants use resourcelike encoding on some of the
trials. The researchers concluded that flexible resources
can be allocated as slots under certain conditions, and
suggested that this may explain why this method
provides evidence for both stances.

Reaction time (RT)

Recently, Donkin, Nosofsky, and colleagues have
modeled RTs, in addition to accuracy rates, in two
versions of the change-detection task: a common single-
probe version and a sequential-presentation version of
the task in which the to-be-remembered items were
presented one after the other (similar to rapid serial
visual presentation; Donkin, Nosofsky, Gold, &
Shiffrin, 2013; Nosofsky & Donkin, 2016). They have
compared the fit of discrete-slots, shared-resource, and
hybrid models to RTs, using modeling of evidence-
accumulation processes. They suggest that while
shared-resource models predict that RTs would be
characterized by a single distribution, discrete-slots
models predict that RTs would be characterized by a
mixture of two distributions—one of a memory-based
evidence-accumulation process (items stored in VSTM)
and another of a guessing-based distribution (items not
encoded to VSTM). In general, their results favor slots
models, indicating that RTs are based on two
processes: evidence accumulation and guessing. How-
ever, in small set sizes or for short lags of presentation
(in sequential presentation), a hybrid model of slots
and shared-resource combination had a better fit to
RTs.

Influence of task requirements on performance

One account of the mixed results is that task demands
can modulate the number of maintained items as well as
their precision (e.g., Dempere-Marco, Melcher, & Deco,
2012; Fougnie, Cormiea, Kanabar, & Alvarez, 2016;
Knops, Piazza, Sengupta, Eger, & Melcher, 2014).

Journal of Vision (2018) 18(9):2, 1–26 Yatziv & Kessler 4

Downloaded From: https://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/937491/ on 09/11/2018



Melcher, Piazza, and colleagues have examined com-
monalities between VSTM capacity and subitizing range
in enumeration, two capacity-limited phenomena that
appear to share a limit of three to four items (Knops et
al., 2014; Melcher & Piazza, 2011). They found that a
saliency manipulation affected VSTM capacity estimates
and subitizing ranges in a similar manner (Melcher &
Piazza, 2011), and that performance on both tasks was
associated with activity in the same brain region, the
posterior parietal cortex (Knops et al., 2014). Subitizing
range was consistently larger than VSTM capacity
estimates, and this discrepancy was evident in posterior
parietal activity as well (Knops et al., 2014). A
computational attractor-network model based on their
behavioral VSTM results has led them to identify two
capacity limitations: shared resource which can be
distributed among items based on saliency and task
demands, and an upper limit on the number of retained
items (Dempere-Marco et al., 2012). Knops et al. argued
that these two limitations account for the mixed results
regarding slots and resources, and that actual capacity in
a given task changes in accordance with task require-
ments (up to the upper capacity limit), such that more
items are represented when required precision is low
(e.g., enumeration tasks) compared to high (e.g., change
detection).

Fougnie et al. (2016) came to a similar conclusion,
proposing that strategic considerations can modulate
the mode in which representations are encoded and
maintained (but see Zhang & Luck, 2011) by manip-
ulating the number of probed items in a delayed-
estimation task. They asked participants to perform
two variations of the task—one in which they had to
report the color of one item (standard task) and
another in which they had to report the colors of all the
items in the display (‘‘get-them-all’’ task). Results
indicated that when participants were informed ahead
of time that the probe would require production of all
items (either by arranging single-task blocks or by
using a task cue during the retention interval in mixed-
task blocks), they showed lower guessing rates but also
worse precision compared to the standard task.
Performance was not modulated by task when partic-
ipants knew how many items to reproduce only when
the probe array was presented. This indicates that
VSTM is flexible, and that under certain conditions one
can control a trade-off between the number of
maintained representations and their precision.

Capacity for complex objects

The question of whether storage is all-or-none is
inherently related to another open question regarding
the architecture of VSTM: Is capacity limited by the
number of to-be-remembered objects, regardless of
their complexity, or do more complex objects consume

more capacity? One definition of complexity refers to
the number of features (namely, dimensions) per object
(e.g., Luck & Vogel, 1997; Wheeler & Treisman, 2002).
Vogel et al. (2001; see also Luck & Vogel, 1997) found
that performance on a change-detection task for
conjunctions of features (e.g., color and orientation of
bars, or colors of bicolored squares) is similar to that
for single features. These findings have led them to
conclude that VSTM is limited by number of objects,
such that VSTM can hold representations of K
integrated objects regardless of complexity. However,
attempts to replicate this seminal finding have yielded
conflicting results (e.g., Olson & Jiang, 2002; Wheeler &
Treisman, 2002).

Fougnie, Asplund, and Marois (2010) used the
delayed-estimation task to examine the effect of the
distribution of features between objects on recall
probability and precision. Their results indicated that
when the number of simple objects increased, precision
and recall probability both decreased. However, when
the number of features within an item increased, the
probability that the item would be encoded remained
the same but the resolution of its representation
decreased. This led the researchers to conclude that
VSTM is limited in both the number of objects and
their precision. Supporting this conclusion are findings
indicating that although manipulation of task require-
ments of either integrated objects or separate features
may affect the type of representation used, both
separate features and integrated objects are represented
(Cowan, Blume, & Saults, 2013; Geigerman, Verhae-
ghen, & Cerella, 2016; Oberauer & Eichenberger, 2013;
Vergauwe & Cowan, 2015).

Alvarez and Cavanagh (2004) have suggested defin-
ing object complexity as visual informational load, or
visual details contained in an object, measured based
on processing speed in a visual-search task. They used a
change-detection task in which to-be-remembered items
consisted of objects with varying informational load—
colors, polygons, shaded cubes, English letters, and
Chinese characters. They found that capacity estimates
decreased monotonically as informational load in-
creased, indicating that VSTM is limited by the amount
of information. Moreover, for objects containing very
little information, capacity was estimated at between
four and five items, indicating that there is also an
upper limit to the number of objects. Thus, they
concluded that VSTM capacity can maintain up to four
to five objects, depending on the amount of informa-
tion the objects contain.

The notion that quality and quantity of representa-
tions in VSTM are dissociable to a certain degree (e.g.,
Alvarez & Cavanagh, 2004; Awh, Barton, & Vogel,
2007; Fougnie et al., 2010) has gained further support
from findings indicating that retention precision of
items can be controlled according to task demands, but
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only when set size is below capacity (Machizawa, Goh,
& Driver, 2012), and that in a given set size, an increase
in the number of features affects precision but not
recall probability (Fougnie et al., 2010). Moreover,
using functional magnetic resonance imaging (fMRI),
Y. Xu and Chun (2006) found that neural activity in
the inferior interparietal sulcus (IPS) is sensitive to the
number of objects, whereas activity in the superior IPS
and lateral occipital complex is sensitive to complexity.
They concluded that the superior IPS and lateral
occipital complex represent object identities (and some
spatial information), while a fixed number of items are
automatically encoded and maintained in the inferior
IPS based on spatial information (even when irrelevant
to the task at hand). Furthermore, they suggested that
reduced capacity for complex items does not stem from
perceptual load or higher difficulty in retrieval but
rather from encoding and maintenance. Despite this
support for limits on both the number of items and
their precision, it should be noted that recent studies
have posed challenges for this view, suggesting that
complexity affects only the number of maintained items
and that this effect does not arise from comparison
errors during the test phase (Brady & Alvarez, 2015;
Taylor, Thomson, Sutton, & Donkin, 2017).

Two-level hierarchical framework

Both discrete- and continuous-capacity models
attempt to explain VSTM capacity as resulting from a
single set of representations (WM) and aim to specify
its features and constraints. In this article we propose
an alternative framework, in which performance arises
from two sets of representations with different char-
acteristics. The novelty of this framework is in its
mechanistic account of the seemingly contradictory
findings of both discrete and continuous representa-
tional states in VSTM, which current theories of VSTM
do not account for. Furthermore, this framework relies
on several supported predecessors by integrating the
VSTM literature with several separate lines of research
in the study of WM over the last couple of decades: the
embedded-processes model (Cowan, 1999; Oberauer,
2002, 2009), gating models (e.g., the prefrontal cortex
and basal ganglia model of WM gating; Hazy et al.,
2006), and research on the retro-cue effect (Griffin &
Nobre, 2003; Landman, Spekreijse, & Lamme, 2003;
Souza & Oberauer, 2016).

Two representational states in VSTM

We identify two sets of representations that enable
memory storage over several seconds and are both

potentially active—in both encoding and retrieval—
during performance on VSTM tasks (see Figure 2). The
higher level is visual WM. There is a broad agreement
that WM (regardless of modality) is highly selective,
and that updating of its content is goal directed and
subject to control (e.g., Braver & Cohen, 2000; Con-
way, Cowan, & Bunting, 2001; Engle & Kane, 2004;
Vogel, McCollough, & Machizawa, 2005). The control
of input selection provides WM with the ability to
maintain goal-relevant information that is required for
the task at hand. Such a mechanism is necessary in
order to make an efficient use of its limited capacity, by
enabling goal-relevant information to enter while
keeping irrelevant information out. The gating meta-
phor is typically used to describe input selection:
Opening and closing the gate to WM enables the
selection of targets from a stream of information that
unfolds in time (e.g., Braver & Cohen, 2000; D’Ard-
enne et al., 2012; Frank, Loughry, & O’Reilly, 2001;
Kessler, 2018; Kessler & Oberauer, 2014, 2015; Olivers
& Meeter, 2008; Rac-Lubashevsky & Kessler, 2016a,
2016b). O’Reilly and colleagues (e.g., Frank, et al.,
2001; Hazy et al., 2006; O’Reilly, 2006; O’Reilly,
Braver, & Cohen, 1999) suggested that the gate to WM
separates anatomically posterior, perceptual represen-
tations (akin to our concept of PM; see later) and
prefrontal-based representations, namely WM. In a
nutshell, their computational, physiologically based
prefrontal cortex and basal ganglia model of WM
gating asserts that gating is implemented by alternating
between two states: a tonic inhibition of the substantia
nigra on the excitatory connections between the
prefrontal cortex and the thalamus, which serves as a
default closed gate, and a transient phasic disinhibition
of this circuit, carried out by the dorsal striatum, which
enables transient gate opening. Based on these
assumptions of two representational states (nonselec-
tive and selective), O’Reilly and colleagues were able to
model performance on various WM and executive
function tasks (e.g., Chatham et al., 2011; Herd et al.,
2014; Kriete, Noelle, Cohen, & O’Reilly, 2013).

This architecture has two implications that are
relevant for our discussion. First, a default closed gate
enables WM to maintain information that is no longer
available perceptually, by shielding it from new
perceptual input. Complemented by a self-excitation
mechanism within the prefrontal cortex (but for an
alternative account, see Postle, 2006), active mainte-
nance within WM enables maintained items to be kept
in a highly accessible state that counteracts decay and
interference. Second, while gating regulates the input to
WM, it does not prevent perceptual input from forming
memory traces outside of it. Hence, a lower-level set of
representations, hereafter termed perceptual memory
(PM), coexists in parallel to WM. As the term suggests,
these are memories that are created automatically, by
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the virtue of perceiving information, and with no or
minimal selective attention or intention. However, the
term PM does not imply that these memories are
necessarily short-lived, akin to sensory or iconic
memory. On the contrary, we suggest that once created,
PM representations can lead to creation of long-term
episodic memories. The idea of PM can be traced back
to Craik and Lockhart’s (1972) levels-of-processing
framework, regarding (episodic) memory as ‘‘a by-
product of perceptual analysis’’ (p. 671). Unlike the
controlled nature of WM, PM representations are
created in an automatic, obligatory manner, as an
emergent property of perception (Graham, Barense, &
Lee, 2010).

The notion that PM representations are formed and
maintained outside WM implies that the same item can
be represented in both PM and WM in parallel,
although different aspects might be represented at each
level. That is, gating an item into visual WM does not
transfer the information, but rather forms a new copy
of that item within visual WM in addition to its
representation in PM. This implies, among other
things, that probing an item, as typically done in
VSTM tasks, serves as a retrieval cue for information
held both in visual WM and in PM. This is the source-
impurity problem in VSTM tasks. However, because
visual WM representations are an attended subset of
PM representations, visual WM items are easily
accessible and receive further processing, while unat-
tended PM representations are harder to retrieve (i.e.,
less accessible) and are more susceptible to interference.

Before we continue to elaborate on each level, we
should explicitly discuss the reliance of our framework
on Cowan’s and Oberauer’s conceptualizations of the
embedded-components model of WM (Cowan, 1988,
1999; Oberauer, 2002, 2009). In this model, long-term
memory (LTM) consists of many representations in
varying degrees of activation; a subset of these
representations are activated enough that they can be
retrieved readily and reliably. The three or four most
accessible of these are attended and enter awareness,
and thus are also reportable (Cowan, 1999). Activated
representations that do not reach awareness are
considered activated LTM (aLTM), while the few
representations that receive complete activation are
considered the (broad) focus of attention (FoA; but for
the idea that the FoA may include one to three items
under certain conditions, see Cowan, Saults, & Blume,
2014; Oberauer, 2013). The proposal that representa-
tions of short-term memoranda can undergo different
states of activation, yielding different representational
properties, has received support from neuroscientific
studies as well (for reviews see, e.g., LaRocque, Lewis-
Peacock, & Postle, 2014; Nee & Jonides, 2011).

Our characterization of the two levels of VSTM
draws on the embedded-components model’s distinc-
tion between the aLTM and the broad FoA. Similar to
the aLTM, PM can be considered a form of unattended
automatic memory. We regard PM as representations
of perceptually based short-term memoranda—that is,
traces of visual properties of perceived stimuli (for a
similar argument see Hasson, Chen, & Honey, 2015).

Figure 2. A schematic description of the two-level hierarchical framework of visual short-term memory (VSTM). VSTM is composed of

two levels of representation: perceptual memory (PM), storing analog representations of visual stimuli in varying activation levels,

and visual WM, storing digital/conceptual representations of a subset of three or four items. PM is the outcome of visual perceptual

processing, and the most activated PM items are selected by a gating mechanism to be represented in visual WM, where these

perceptual representations are bound to their corresponding conceptual representations in semantic long-term memory, creating

structured representations. Performance on VSTM tasks is affected by representations in both levels, but to different degrees,

depending on the task requirements (denoted as x1 and x2, which represent weights). Specifically, performance on the change-

detection task is likely to tap mainly the discrete aspect of these structures, while the delayed-estimation task is likely to tap mostly

the continuous/analog aspects of these structures.
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This idea echoes the suggestion by Cowan et al. (2014)
that aLTM could be viewed as a peripheral, modality-
specific form of short-term memory storage, in which
information is stored automatically. We embrace and
extend this approach, and regard PM as a form of
perceptual aLTM.

As mentioned, Oberauer and Lin (2017) recently
applied the interference model (e.g., Oberauer, Farrell,
Jarrold, & Lewandowsky, 2016; Oberauer, Lewan-
dowsky, Farrell, Jarrold, & Greaves, 2012), which relies
on the embedded-components framework, to delayed-
estimation performance. In terms of the embedded-
components framework, in the interference model all
items to be remembered are represented in the broad
FoA/WM, and performance at large set sizes is
degraded because items inside the FoA interfere with
one another. Other than that, previous discussions of
the embedded-processes framework with regard to
VSTM have focused mainly on the distinction between
the broad and the narrow FoA (e.g., Cowan, 2011;
Rerko & Oberauer, 2013; Souza, Rerko, & Oberauer,
2014). Furthermore, studies regarding the effects of
LTM on performance in VSTM tasks have examined
the effects of prior knowledge or previously learned
associations (e.g., Brady, Konkle, & Alvarez, 2009;
Oberauer, Awh, & Sutterer, 2017). In contrast, our
notion of PM is inspired by a single-store view of LTM,
in which PM representations are formed and retrieved
instantaneously, similar to the notion of the aLTM in
the embedded-components model.

Visual properties of the two representational states

The debate over the architecture of VSTM is about
discrete representational states (quanta) versus contin-
uous representational states. All sides seem to agree
that the information encoded in VSTM is analog (or
metric), representing shades of colors, orientation in
degrees, and so forth. That is, the different models seem
to assume that visual representations themselves are set
on a continuum, drawn from continuous, rather than
discrete, distributions. A question to be raised here is
whether encoding of visual information is indeed solely
analog, without involvement of symbolic codes. This
question has only recently begun receiving attention in
modeling of performance on delayed-estimation tasks
(Bae, Olkkonen, Allred, & Flombaum, 2015; Hardman,
Vergauwe, & Ricker, 2017).

According to the visual-perception literature, com-
plete visual processing along the ventral stream is
geared toward object recognition. Perception therefore
results not only in extraction of a visual representation
of the perceived object but also in identification of the
object by assigning it to a conceptual, abstract
category. For example, in Marr’s (1982) seminal
analysis of visual-perceptual processing, object recog-

nition is achieved through three levels: (1) a primal
sketch level where blobs, bars, and edges are encoded;
(2) a 2.5-D sketch level in which a viewpoint-specific
representation of an object is obtained; and (3) a 3-D
model level in which a viewpoint-invariant representa-
tion of an abstract object is achieved. Thus, according
to Marr, the final stage of visual processing involves
assignment of the perceived object to a category,
relating it to conceptual information. This notion is
supported by the finding that continuous (metric) and
categorical color information are related to different
brain regions: While the visual cortex is sensitive to
metric (i.e., continuous) differences between hues, the
medial prefrontal cortex is sensitive to differences
between color categories (Bird, Berens, Horner, &
Franklin, 2014). More recent models of visual percep-
tion regard visual processing not as occurring in a
serial, bottom-up process such as described by Marr
(and other classic models) but as an iterative process
that involves interactions between bottom-up and top-
down processes, manifested in coactivation and inter-
actions between ventral-path visual areas and higher
prefrontal and medial-temporal areas, via combined
feed-forward and feedback connections (e.g., Bar, 2004;
Hochstein & Ahissar, 2002). These models also locate
specific categorization for object recognition as the end
goal of visual perception. According to these theories,
while the gist of the scene, gross categories, and some
contextual features are extracted at early stages of
processing, exact categorization is achieved at final
stages of processing, as a result of coactivation of high
and low areas (e.g., Bar, 2004; Hochstein & Ahissar,
2002; Lamme, 2010; Schendan & Stern, 2008).

These characterizations of visual processing have
implications for understanding the properties of
representations stored in PM and visual WM (see Table
1 for a summary). PM representations are early,
partial, and relatively involuntary. They are created en
passant, in an automatic and obligatory manner, as
part of ongoing perception. These representations
include the perceived object’s specific features, such as
hue, shape, and orientation, all in metric/continuous
space—namely, in analog representations. In addition,
complete visual processing ends in the assignment of
objects to categories. Indeed, studies suggest that visual
representations entail automatic encoding of categories
(Bird et al., 2014) or verbal tags in memory as well
(Postle, 2006; Potter, 1993), although these may be
weak when unattended (Cowan, 1999). Thus, percep-
tion of visual stimuli would result in episodic-perceptual
traces of the visual properties of these stimuli in PM
(e.g., a particular shade of green), and consequently in
activation of semantic traces of conceptual tags related
to these properties (e.g., the color tag ‘‘green’’) in
semantic memory.
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Not all visual input reaches visual WM eventually—
only a subset of the perceived information. However,
this optional level of processing, when utilized, is the
final station of attending to products of perceptual or
response processing (e.g., Chun, 2011; Postle, 2006).
Visual WM thus holds information that is already
completely processed in lower-level perceptual mod-
ules, including feature extraction, feature binding, and
categorization. Thus, representations in visual WM are
conceptual (at least whenever any categorization can
take place) and include the assignment of the repre-
sented items to their categories, such as color tags. In
this sense, then, visual WM stores digital information,
which although not necessarily held in discrete states of
strength may appear as if it is discrete (i.e., may appear
slotlike, or as if capacity is quantized) due to the digital
information its representations convey. This is in sharp
contrast to PM, which comprises partial, incomplete,
and nonunitized pieces of information that result from
earlier stages of perceptual analysis.

Selection of items from PM to visual WM

Following this logic of VSTM as an emergent
property of visual perception, a plausible mechanism
by which levels of activations within PM might be
determined is the use of priority maps (e.g., Franconeri,
Alvarez, & Patrick, 2013; Knops et al., 2014; Melcher &
Piazza, 2011). Priority maps are spatial maps on which
the distribution of visual attention across locations is
represented by assigning weights to different locations
based on visual saliency, reward values, and task
relevance (e.g., Fecteau & Munoz, 2006; Serences &
Yantis, 2006; Zelinsky & Bisley, 2015). Importantly,
the history of past stimuli is also represented in these
maps (for a recent review, see Failing & Theeuwes,
2017). In perception, items in locations receiving
greater sums of activation in the priority maps are then
selected, or prioritized, for further processing and
visual awareness (Fecteau & Munoz, 2006; Serences &
Yantis, 2006; Zelinsky & Bisley, 2015). The different
weighting factors result in items having variable,
relative strength, such that unselected items are still
processed to certain degrees (Serences & Yantis, 2006).

A growing body of research suggests that VSTM
shares a common priority map with perceptual
attention (Franconeri et al., 2013; Hedge, Oberauer, &
Leonards, 2015; Theeuwes, Belopolsky, & Olivers,
2009) and enumeration (Knops et al., 2014; Melcher &
Piazza, 2011). As would be expected, performance in
VSTM tasks has been found to be modulated by visual
saliency (e.g., Gaspar, Christie, Prime, Jolicœur, &
McDonald, 2016; Klink, Jeurissen, Theeuwes, Denys,
& Roelfsema, 2017; Melcher & Piazza, 2011), reward-
related history of stimuli (Gong & Li, 2014; Infanti,
Hickey, & Turatto, 2015; Klink et al., 2017), and task
relevance (e.g., Heuer, Crawford, & Schubö, 2017;
Melcher & Piazza, 2011). Importantly, Melcher and
Piazza (2011) found that top-down and bottom-up
saliency had a cumulative effect on change-detection
performance (though bottom-up saliency seems to be
processed faster; see Klink et al., 2017), supporting the
notion of continuous levels of activation in VSTM.

Following these findings, Melcher, Piazza, and
colleagues (Knops et al., 2014; Melcher & Piazza, 2011)
suggested that competition between items in priority
maps could underlie VSTM capacity limitations (see
also Franconeri et al., 2013). Taken together with
another finding that VSTM capacity estimates and
subitizing range are correlated only under low mainte-
nance load, they concluded that visual memory of
objects includes two processes: individuation of objects
in priority maps (shared with other capacity-limited
operations such as subitizing; see also Mazza &
Caramazza, 2015) and an additional maintenance
process unique to VSTM (Melcher & Piazza, 2011). In
this account, priority maps determine which items
would be maintained and in what resolution, up to an
upper item limit (Dempere-Marco et al., 2012). This
account is also supported by an attractor-networks
computational model that was able to account for both
behavioral performance and neural activity patterns
(Dempere-Marco et al., 2012), indicating that the two
processing stages (especially during encoding) can
determine actual capacity.

Here we argue that VSTM relies on two sets of
representations rather than one. While we agree that
the use of priority maps determines capacity allocation,
and that gating of items to visual WM is based on

Characteristic PM Visual WM

Content Analog/metric information:

Representations of specific

perceptual features

Digital/symbolic information:

Structures including perceptual and

conceptual dimensions

Attention Unattended Attended

Item-to-context binding Weak Strong

Encoding Automatic Controlled

Retrieval Signal-detection process Threshold process

Table 1. Characteristics of representations in perceptual memory (PM) and visual working memory (WM).
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activity in these maps, we contend that the selection
process renders visual WM representations qualita-
tively distinct from PM representations. Thus, because
PM activation is determined by priority maps, PM
representations are continuous in two respects: Their
representational states are continuous (due to variable
summation of weights in the priority maps), and the
information they convey is analog. On the basis of
attentional weights on these maps, a gating mechanism
can select items to be represented in visual WM, where
their strength would be maintained. Thus, there is an
item limit in visual WM but not in PM.

Perceptual memory as an automatically
encoded nonselective form of VSTM

As already explained, PM is characterized as a
storage mechanism that contains automatically encod-
ed representations of metric features of perceived visual
stimuli (e.g., hues and orientation in degrees). Levels of
activation of these representations are governed by
priority maps, whereby weights based on top-down and
bottom-up attentional priorities are combined to
determine allocation of attention. While items in visual
WM are most accessible for retrieval by definition (e.g.,
Cowan, 1999), PM representations are less accessible
for deliberate retrieval (namely, recollection). One
manner in which retrieval from PM can be accom-
plished is through familiarity signals (e.g., Oberauer,
2009). Another option for retrieval of items from PM is
via gating items to visual WM, for example by directing
attention to a PM representation based on retro-cues.
This process is likely to take longer than recollection
from visual WM (as would be suggested by the latency
of retro-cue benefits, which requires at least 300 ms; see
Souza & Oberauer, 2016). However, items outside
visual WM are more susceptible to interference, and
therefore interference from other relevant stimuli (such
as secondary tasks or test displays; e.g., Pinto, Sligte,
Shapiro, & Lamme, 2013; Souza & Oberauer, 2016)
may undermine the accessibility of PM representations.
In this sense, PM representations are relatively short-
lived in terms of being accessible for deliberate
retrieval. Nonetheless, under low interference these
representations could exist in parallel to visual WM
and be made accessible for longer periods of time.

Although PM representations are less accessible for
deliberate retrieval and are more susceptible to
interference compared to visual WM representations,
they affect performance within a given trial and also
across trials. Within a given trial (e.g., attempting to
remember a memory array), items that are represented
solely in PM (and not in visual WM) affect perfor-
mance in two general ways. First, they generate
familiarity signals (see Oberauer, 2009), which can be

used for retrieval, although with lowered precision
and heightened susceptibility to swap errors compared
to items retrieved from visual WM (which are
retrieved via recollection). Second, these items give
rise to encoding of summary statistics (such as mean
size), which bias performance in that trial toward the
ensemble statistic (Brady & Alvarez, 2011). Across
trials, these representations continue to affect perfor-
mance through accumulating history of past stimuli
(e.g., as evident in sequential effects), reflecting
automatic, trial-by-trial updating of the content of
PM (Failing & Theeuwes, 2017). It should be noted
that by ‘‘updating’’ we do not necessarily mean
removal of stimuli (Ecker, Lewandowsky, Oberauer,
& Chee, 2010; Nadel, Hupbach, Gomez, Newman-
Smith, 2012); rather, automatic updating can be
conceptualized as automatic modifications in weights
in the priority maps based on the accumulation of the
last several trials.

To summarize, we characterize PM as a large-
capacity storage mechanism in which analog represen-
tations of visual items are maintained in varying
degrees of activation. These items are maintained in
parallel to visual WM but are less accessible for
controlled retrieval; nonetheless, they affect perfor-
mance within a given trial and between trials. It should
be made explicit that although this description may
appear similar to the notion of iconic memory, we do
not consider PM as a temporary station before visual
WM, holding extremely short-lived representations.
Rather, we argue that PM representations can be
maintained in parallel to visual WM representations,
and continue to affect performance even after masking,
after relatively long periods of time since stimulus
offset, or in subsequent trials.

In this section we provide evidence for such an
automatic form of VSTM that does not have an item
limit. First, we provide evidence indicating that VSTM
performance is affected by automatic processes. Next,
we address findings indicating that under some
conditions suitable for reliance on PM representa-
tions, VSTM capacity is less restricted than when
visual WM is recruited. Finally, we review evidence
that PM representations have weak item-to-context
bindings.

Automatic effects

Automatic processes are processes that take place
spontaneously, even if they are not part of task
requirements (Tzelgov, 1997). Due to the nonselective
nature of PM, we suggest that PM representations can
be formed and activated automatically. Moreover, as
demonstrated later, retrieval from PM is automatic
because it gives rise to effects that take place implicitly
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or without intention. Being automatic, these effects
could bias responses or even impair performance.

Several effects of automatic processing are observed
in VSTM task performance. First, Brady et al. (2009)
found that participants implicitly learn regularities in
color pairings of items over trials in a change-detection
task and use this learning to improve their performance
in trials where regularities appear. Further evidence for
automatic processing comes from sequential effects in
VSTM performance (e.g., Huang & Sekuler, 2010;
Wilken & Ma, 2004). For example, Huang and Sekuler
(2010) asked participants to perform a delayed-
estimation task with Gabor patches and found that
estimations of spatial frequencies were biased toward
the mean frequency of the stimuli presented in the
memory arrays of the last three to five trials. Both
implicit learning of statistical properties and sequential
effects are clearly memory phenomena, as they rely on
internal representations of prior (but recent) stimuli.
However, they occur automatically (e.g., Brady &
Oliva, 2008; Fiser & Aslin, 2001; Kessler, 2018; Kim,
Seitz, Feenstra, & Shams, 2009; Rac-Lubashevsky &
Kessler, 2016b) and are not part of the task require-
ments, since the information presented in previous
trials is no longer relevant.

The effects of automatic processing can also be
demonstrated within a given trial, not only across
trials. This point is important to our discussion, given
that we regard PM as containing perceptual short-term
representations activated within the course of a single
trial. Indeed, recent studies have shown that delayed-
estimation performance is affected by ensemble statis-
tics, such as mean size (Brady & Alvarez, 2011) or mean
spatial frequency (Huang & Sekuler, 2010; Wilken &
Ma, 2004) of items within a memory array, as well as
by regularities within a display (Brady et al., 2009;
Brady & Alvarez, 2015; Victor & Conte, 2004). For
example, Brady and Alvarez (2011) asked participants
to estimate the size of an item in a delayed-estimation
task and found that estimation was biased toward the
mean size of the group of objects the probe belonged to
(e.g., circles from a certain color). It is important to
note that representing mean size (as well as averaging
across other dimensions) of groups of objects is
automatic, in that it takes place implicitly, without
conscious intent, or without being part of task
requirements (Brady & Alvarez, 2011; Turk-Browne,
Jungé, & Scholl, 2005; for automatic averaging of
orientation, see Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001). Furthermore, perception of mean size
is accurate even after short exposure durations (e.g., 50
ms) and is hardly affected by the number of items to be
summarized (Ariely, 2001; Chong & Treisman, 2003).
However, research suggests that although this is an
automatic process, it is executed only with regard to
task-relevant dimensions (Brady & Alvarez, 2011;

Turk-Browne et al., 2005). Brady and Alvarez argue
that this effect demonstrates that WM is susceptible to
the same effects that LTM is susceptible to. We
interpret these results as reflecting the involvement of
PM in within-trial performance on VSTM tasks, due to
representing information in parallel to visual WM.

These findings indicate that summary statistics are
represented automatically, as a by-product of percep-
tion. However, they do not necessarily indicate that
items outside visual WM were represented individually,
other than a summary representation. Bronfman,
Brezis, Jacobson, and Usher (2014) found evidence for
a summary statistic that relies on differentiating colors
of separate representations, indicating that items were
represented separately. They asked participants to
perform a Sperling task: to remember colored letters
arranged in four rows of six items. Afterward, a retro-
cue indicating the row to be probed appeared, and was
followed by a question mark in one location in the
retro-cued row; participants were to report the identity
of the letter in the marked location. In addition, the
researchers orthogonally manipulated the color diver-
sity of the letters in the cued and noncued rows, such
that letter colors were either nondiverse (e.g., different
shades of blue and purple; low diversity) or diverse
(e.g., yellow, red, green, etc.; high diversity). In separate
blocks, after reporting the probed letter’s identity,
participants were asked to judge whether the color
diversity of either the cued row or the three noncued
rows was high or low. Participants were able to judge
the color diversity of the noncued rows above chance
level. Moreover, memory performance for letter
identities was not affected by whether participants were
asked to judge diversity or not, nor by whether
diversity was judged for the cued or the noncued rows.
Furthermore, when the researchers introduced a mask
and asked participants to report only the visibility and
the color diversity (without performing the Sperling
task itself), participants were able to report diversity
above chance level—but only if the array was not
presented subliminally. Because at least part of the
items in the cued row (containing six items) are in
visual WM and items in noncued rows are outside
visual WM (containing at least 18 items), the findings
indicate that participants were able to use a summary
statistic that requires differentiated representations
maintained outside visual WM, within a single trial,
without intent, after masking, and without a capacity
cost. This provides further support for the notion of
larger-capacity, PM-based automatic effects of sum-
mary statistics.

Recently, Lorenc, Sreenivasan, Nee, Vanden-
broucke, and D’Esposito (2018) used an fMRI inverted
encoding model in order to examine the effect of
distractor interference on VSTM representations in a
delayed-estimation task. They found evidence for two
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distinct representations of memory items: one in early
visual areas, and the other in the IPS. While IPS
representations were stable at the face of distractors,
early visual areas were more susceptible to interference,
as indicated by a distractor bias. These findings support
both the distinction between PM and visual WM
representations and the automatic nonselective nature
of PM representations.

Large capacity for visual memoranda

Endress and Potter (2014) examined forgetting in
VSTM using a paradigm of rapid serial vision
presentation with real-world objects as stimuli. Partic-
ipants were presented with a sequence of pictures and
then asked to indicate whether a test item was part of
the sequence or not. Importantly, proactive interfer-
ence was manipulated by either repeating items
between trials or using unique stimuli. The results
revealed that while capacity estimates were low in the
proactive-interference condition, they increased dra-
matically to up to 30 items in the low-interference
condition, with no evidence for a fixed upper limit in
this condition. Furthermore, a manipulation of the
sequence-test lag duration revealed that representations
in the low-interference condition were stable but
decayed within several seconds. Endress and Potter’s
conclusion was that their results support the existence
of an ‘‘unconsolidated form of LTM that functions as a
temporary memory store’’ (p. 561). This description
maps nicely onto our concept of PM.

Endress and Potter’s results and conclusions coin-
cide with findings regarding memory of complex visual
scenes over periods of several minutes (e.g., Konkle,
Brady, Alvarez, & Oliva, 2010; Melcher, 2001, 2006),
indicating large visual capacity independent of WM. In
the case of complex scenes, participants are able to
discriminate between studied and novel scenes (e.g.,
Konkle et al., 2010) or objects presented within scenes
(e.g., Hollingworth & Henderson, 2002; Melcher, 2001,
2006) with high precision, even after studying large
numbers of visual scenes. The fidelity of these
representations continues to increase with repeated
exposure (Melcher, 2001), even if other to-be-remem-
bered scenes or an additional task are introduced
between these viewings (Melcher, 2006), indicating that
these representations are not held in WM. However,
these representations do not seem to be consolidated to
LTM for more extended periods of times (e.g., days;
Melcher, 2006). Furthermore, the fidelity of memory of
scenes decreases when more exemplars from the same
categories are encoded, indicating that between-items
interference may reduce capacity for complex scenes
(Konkle et al., 2010). These findings have led Melcher
(2001, 2006) to suggest a ‘‘medium-short’’ memory
mechanism, a large-capacity storage that maintains

visual representations over several minutes which does
not consolidate into LTM and is independent of visual
WM. Endress and Potter’s (2014) study likely taps the
same kind of ‘‘medium-short’’ memory mechanism,
which is parallel to WM. These representations seem to
be accessible for retrieval under low interitem interfer-
ence.

Further support for the involvement of PM in
VSTM tasks, indicating task impurity, comes from a
line of research regarding the retro-cue effect. This well-
established finding is that a cue which appears during
the retention interval in a change-detection task (i.e.,
after the presentation of a memory array but before the
appearance of the probe) and indicates the to-be-tested
item, facilitates performance considerably, sometimes
up to capacity estimates of 15 items (e.g., Griffin &
Nobre, 2003; Landman et al., 2003; Sligte et al., 2008;
for a review, see Souza & Oberauer, 2016). In delayed-
estimation tasks, retro-cues facilitate performance
mainly by increasing recall probability and lowering
guessing rates (e.g., Makovski & Pertzov, 2015;
Murray, Nobre, Clark, Cravo, & Stokes, 2013; Pertzov,
Bays, Joseph, & Husain, 2013; Souza et al., 2016;
Souza, Rerko, Lin, & Oberauer, 2014; Thibault, van
den Berg, Cavanagh, & Sergent, 2016; van Moorselaar,
Gunseli, Theeuwes, & Olivers, 2015). Importantly, the
retro-cue effect reveals that the capacity of VSTM is
underestimated (e.g., Makovski, Sussman, & Jiang,
2008; Souza & Oberauer, 2016).

Sligte and colleagues (Pinto et al., 2013; Sligte et al.,
2008; Vandenbroucke, Sligte, & Lamme, 2011) attri-
bute the retro-cue effect to an additional short-term
memory store before WM, which is less restricted in
capacity: fragile VSTM. That is, according to their
account of the retro-cue effect, the increase in capacity
results from information being stored outside visual
WM, namely in fragile VSTM. They argue that three to
four items are stored in robust visual WM, while
several additional items are represented in the less
accessible fragile VSTM. Given enough time, retro-cues
allow one to direct attention to fragile VSTM
representations and access and retrieve them by getting
these representations to visual WM.

Although the fragile VSTM account of the retro-cue
effect may be appealing, there is no consensus over
whether this effect indeed indicates the existence of
multiple memory stores, with some arguing that it can
be accounted for under a single VSTM store (e.g.,
Makovski, 2012). The mechanisms underlying the
retro-cue effect are not fully clear yet (for an evaluation
of possible mechanistic accounts of the retro-cue, see
Souza & Oberauer, 2016), but it is unanimous that the
operation of retro-cues involves allocating attention to
the cued item (e.g., Dell’Acqua, Sessa, Toffanin, Luria,
& Jolicoeur, 2010; Lepsien, Thornton, & Nobre, 2011;
Makovski et al., 2008; Oberauer & Hein, 2012; Souza &
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Oberauer, 2016). However, any single-store account of
the retro-cue effect must address how this cue facilitates
performance—be it in accuracy rate or increased
precision—without that information being stored
elsewhere (e.g., Souza, Rerko, Lin, & Oberauer, 2014).

In our framework, we embrace the interpretation of
the retro-cue effect as evidence for (at least) two
representational states within a nested system (e.g.
LaRocque, Lewis-Peacock, Drysdale, Oberauer, &
Postle, 2013; Rerko, Souza, & Oberauer, 2014; Souza &
Oberauer, 2016; Zokaei, Ning, Manohar, Feredoes, &
Husain, 2014). We suggest that the retro-cue effect
reflects the distinction between representations in two
hierarchical levels—PM and visual WM—where visual
WM items are an attended subset of PM representa-
tions. If PM representations receive attention, as when
probed by a retro-cue, they are gated into visual WM
and become more accessible. This account is consistent
with Endress and Potter’s (2014) findings of increased
capacity under low-interference conditions, indicating
that capacity is less limited under low attentional
demands. Furthermore, it is also consistent with
findings indicating that retrieval of cued and noncued
items is associated with activation in different brain
regions (e.g., Schneider, Mertes, & Wascher, 2016;
Sligte, Wokke, Tesselaar, Scholte, & Lamme, 2011;
Vandenbroucke, Sligte, de Vries, Cohen, & Lamme,
2015).

Experimental findings support the notion that
noncued items are represented in PM. PM representa-
tions are less accessible than visual WM items but can
be retrieved when attention is directed toward them.
First, the retro-cue benefit is observed only when there
is sufficient time between the appearance of the cue and
the test display (at least 300 ms; for a review, see Souza
& Oberauer, 2016). Studies in which invalid retro-cues
were used found lower performance on invalid trials
compared to neutral or valid cues (retro-cue cost; e.g.,
Griffin & Nobre, 2003; LaRocque et al., 2015; Li &
Saiki, 2014; Pertzov et al., 2013; van Moorselaar,
Olivers, Theeuwes, Lamme, & Sligte, 2015), indicating
that noncued items are indeed less accessible and
providing evidence that some of the benefit of the retro-
cue is at least partially due to removal of noncued items
(for an analysis of the removal hypothesis, see Souza &
Oberauer, 2016). However, these items are not entirely
forgotten, and they can still be accessed later. Studies
that used a double-cueing paradigm found that items
not cued by a first retro-cue but subsequently cued by a
second cue could be retrieved with high accuracy
(Heuer & Schubö, 2016; Landman et al., 2003; Li &
Saiki, 2014; Rerko & Oberauer, 2013; van Moorselaar,
Olivers, et al., 2015; for supporting evidence using a
different paradigm, see Zokaei et al., 2014).

Taken together, there is evidence for a large-capacity
mechanism which operates in parallel to WM and

includes representations maintained for a short to
medium period of time: PM. Representations main-
tained in PM can be recollected under certain
circumstances—that is, when interitem interference is
low or when top-down cues can be used to gate PM
items into WM (provided that there is sufficient time
for retrieval, as indicated by the time course of the
retro-cue effect). In other cases, these representations
affect performance via automatic effects, such as
statistical biases and sequential effects between trials.
These representations may continue to exist in parallel
to WM for several seconds, and perhaps minutes, as
evident in the double-cueing effect, sequential effects
across trials, and memory for complex scenes. The
longevity of PM representations is likely determined by
several factors, such as the amount of interitem
interference and each item’s weight in the priority map
(based on history, saliency, reward, etc.); future
research should further examine the time course of
these representations.

Weak item-to-context binding

Another difference between PM and visual WM
representations lies in the strength of item-to-context
bindings: PM representations have weak item-to-
context bindings, whereas items in visual WM have
strong ones. This should have an important implication
for swap errors, which denote mistakenly reporting
features of wrong items. Indeed, retro-cuing has been
associated with reduced swap errors in studies incor-
porating retro-cues in delayed-estimation tasks (Ma-
kovski & Pertzov, 2015; Souza et al., 2016; Wallis,
Stokes, Cousijn, Woolrich, & Nobre, 2015). Further-
more, noncued items probed in invalid cue trials are
associated with an increase in swap errors (Gunseli, van
Moorselaar, Meeter, & Olivers 2015).

The need for item-to-context binding may be
especially important in holding representations of
complex objects. Building on the embedded-process
model, complex objects are understood in our frame-
work as constructs in which PM representations of
their features in different dimensions (e.g., colors,
shapes) are bound to a single location (context). For
items in visual WM, feature-location (item-to-context)
bindings are amplified. Locations act as potent
contextual cues for retrieval (Oberauer, 2009; see also
Pertzov & Husain, 2014), and therefore location retro-
cues should be more beneficial than feature retro-cues
(color, shape, etc.). This is supported by studies
showing better accuracy in change detection with
complex objects on a location retro-cue condition
compared to a color retro-cue condition (Li & Saiki,
2015; but see Kalogeropoulou, Jagadeesh, Ohl, &
Rolfs, 2017), and lower performance when participants
are asked not to encode locations compared to being
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asked not to remember other features (Kondo & Saiki,
2012). Additional support for this notion comes from
the finding of Cowan et al. (2014) that visual peripheral
capacity, attributed to aLTM, is more restricted when
binding information, rather than simple features, is to
be retained (for additional supporting evidence, see also
Fougnie & Marois, 2011).

Visual WM as a seemingly quantized, selective,
and conceptual form of VSTM

As explained earlier, visual WM holds items for
which the perceptual processing is complete. In these
items, features such as hue and orientation are bound
together, as well as to their context (e.g., location) and
to a conceptual tag (e.g., ‘‘green,’’ ‘‘tilted to the right’’).
The major property rendering visual WM representa-
tions slotlike, we argue, is the conceptual nature of
these items.

Conceptual tags in visual WM

We suggest that the major factor that renders visual
WM representations discrete is their conceptual, or
categorical, nature. Categorical representations contain
symbolic information (‘‘green,’’ ‘‘red’’). Unlike analog
representations, which are set on one continuum and
therefore may elicit high levels of interference, symbolic
representations can assist maintenance by helping
distinguish between maintained items and thus reduc-
ing interitem interference (e.g., Brady, Störmer, &
Alvarez, 2016). This feature of symbolic-categorical
representations can lead to quantized-like effects in
VSTM tasks.

Studies suggest that VSTM capacity estimates
increase as memory items are easier to categorize.
Olsson and Poom (2005) provided initial evidence for
the involvement of categorization in change-detection
performance by comparing VSTM capacity for items
from distinct categories (e.g., discrete colors or
different shapes) and for items that do not fall into
discrete categories (e.g., ovals in different proportions).
In accordance with our framework, they found that
estimated capacity was higher for items from distinct
categories. Furthermore, VSTM capacity was estimat-
ed as being only about one memory item in the
noncategorical condition, indicating that conceptual
representations assist in maintenance and accessibility
of more items, namely three to four items. Brady et al.
(2016) also found a higher capacity estimate as well as
larger amplitude of contralateral delay activity for
meaningful real-world items compared to simple
colored squares. Because contralateral delay activity is
associated with visual WM maintenance and not with
LTM consolidation (Brady et al., 2016; Carlisle, Arita,

Pardo, & Woodman, 2011), these findings provide
additional support for the benefit of concepts in visual
WM maintenance.

According to our framework, visual WM represen-
tations involve bindings of continuous information
(stored in PM) to symbolic concepts. This characteristic
can be evaluated by using the delayed-estimation
paradigm, where performance should be influenced
both by the specific feature of the probed item (token)
and by the category the estimated item belongs to
(type). Indeed, Bae et al. (2015) have found evidence for
the existence of such combined continuous-categorical
representations. Their results revealed that color
delayed estimation of one item was biased toward the
exemplar of a color category, especially for probes at
category boundaries (i.e., that were more distant from
the category exemplar on the continuous space).
Interestingly, this bias was present also in undelayed
estimation—that is, when participants estimated
probes’ colors while they were still present on the
screen—though to a lesser degree. Konkle and Oliva
(2007) reported a similar finding of size bias in a
change-detection task with real-world objects: Detec-
tion of change was lower when the size of the probe
changed toward the normative size of the real-world
object compared to changes that deviated away from
the normative size. Thus, the results from Bae et al. and
Konkle and Oliva reveal that biases toward category
centers are evident in perceptual tasks (for neurosci-
entific evidence in perception, see also Bird et al., 2014)
but appear to get larger in VSTM tasks. These findings
indicate that perceptual representations are both
analog/continuous and digital/categorical already at
the level of PM (as an emergent property of percep-
tion); however, their categorical aspect is amplified in
visual WM (but see Hardman et al., 2017).

Strong item-to-context binding in visual WM

According to the embedded-components theory, the
major defining function of visual WM (the broad FoA)
is to make distinct items accessible and enable
integration as well as identification of similarities and
differences between items. This is enabled by binding
content items to a context set on a cognitive coordinate
system (Oberauer, 2009). Visual WM is limited in the
number of bindings that can be maintained effectively
with minimal interitem interference (Oberauer, 2009;
see also Oberauer et al., 2016; Oberauer, Farrell,
Jarrold, Pasiecznik, & Greaves, 2012).

Evidence from VSTM studies supports these no-
tions. First, as already described, evidence indicates
that while item-to-context binding in PM is quite weak,
visual WM strengthens these connections. Second, this
difference in item-to-context binding between PM and
visual WM can be implemented neurally. Swan and
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Wyble (2014) proposed the ‘‘binding pool model,’’ a
computational neural-network model of VSTM. In that
model, VSTM representations are links between types
and token, the former being simple features and the
latter being pointers used for binding of different
features. The type layer is continuous and resource
based, while the token layer is slots based. This
conceptualization is, in general, quite similar to our
distinction between continuous PM and discrete visual
WM. That model yielded characteristic results obtained
in VSTM experiments, such as the set-size effect in
precision and swap errors, indicating the plausibility of
representations based on two levels, a continuous one
and a discrete one.

It should be noted that the manner in which item-to-
context bindings limit capacity can be subject to
different interpretations. In Swan and Wyble’s (2014)
model and in Oberauer and Lin’s (2017; as well as in
other interference-based models of nonvisual material;
see Oberauer et al., 2012; Oberauer et al., 2016) all to-
be-remembered items are represented in visual WM
(though some memory items may not be represented at
all). Performance at large set sizes is degraded because
items inside visual WM interfere with one another.
Under this interpretation, although visual WM repre-
sentations themselves are discrete, binding links can be
thought of as having varying degrees of activation.
Oberauer and Lin’s interference model explains the
retro-cue effect as a result of shifts in the narrow FoA,
which strengthens one memory item. This model
outperformed other models, such as the slots þ
averaging model and the variable-precision resource
model (Oberauer & Lin, 2017).

In contrast to the interference-based models, we
suggest that in large set sizes only three or four items
are represented in visual WM, whereas all items
(including the former) are represented in PM. Accord-
ingly, supraspan items are held only in PM. We explain
the set-size effect as resulting from less accessibility of
items represented solely in PM. While Oberauer and
Lin’s model is admittedly more parsimonious than our
framework (having a single memory store), more
experimental investigations as well as modeling effort
should address the issue of whether memory traces exist
outside visual WM (namely, the broad FoA).

However, it is plausible that the known three- to
four-item limit (which is found across modalities and is
not restricted to VSTM) is not structural but rather
practical, and can be subject to top-down control. That
is, it is possible that three to four items are maintained
in visual WM in order to keep interference minimal
(and thus ensure high performance for a subset of the
memory items), but this number can be changed (while
bearing a performance cost) according to task re-
quirements (see ‘‘Influence of task requirements on
performance’’ subsection ; Bengson & Luck, 2016).

Summary and conclusions

Returning to the discrete- versus continuous-
capacity debate

In the beginning of this article, we reviewed
benchmark findings regarding the debate over whether
VSTM capacity is discrete or continuous. Overall,
findings were intermixed, with both the discrete-
capacity (quantized) and continuous-capacity stances
receiving some supporting evidence. Furthermore,
hybrid models appeared to account for data better than
each class of models by itself.

Our framework provides a theoretical foundation for
a mechanistic account of why both stances gain
empirical support, and why hybrid models fit the data
better. We argued and provided evidence for the view
that VSTM is a hierarchical system in which one level is
perceptual and contains automatically encoded analog
representations without an item limit, and another level
is conceptual and therefore may appear quantized. The
most accessible items, those in visual WM, are
structures relating continuous-perceptual information
with discrete-conceptual information, and thus this
mechanism appears both quantized and continuous, or
limited in both the number of items and the precision
with which they are retained. Thus, this framework
provides an architecture fitting the recent suggestion
that the number of maintained representations is
quantized (as in slots models) while the precision with
which these representations is retained may be deter-
mined by division of activation levels (as in shared-
resource models; Fougnie et al., 2010).

The two-level distinction as a characteristic of
visual processing

After having provided evidence for the two levels in
the case of VSTM, a final note on how this framework
combines with current theories of visual processing is in
order. The idea that two parallel (but interacting)
stages of analysis are based on different kinds of
representations—analog and automatic or digital and
controlled—seems to be a common thread among
theories explaining phenomena in various domains of
perceptual, and specifically visual, processing. One
example is the interaction between object and gist-of-
scene perception (e.g., Bar, 2004; Hochstein & Ahissar,
2002; Melcher & Colby, 2008). While the gist of the
scene (and its effect on performance, for example in
change-blindness tasks) is based on statistical proper-
ties and regularities within the whole display, the
recognition of specific objects is more analog and is
limited to only several items. A second example, which
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bears a striking resemblance to the framework we have
described, comes from the study of enumeration in
numerical cognition.1 Anobile, Cicchini, and Burr
(2016) recently suggested that two parallel processes
take part in enumeration (in displays with low to
medium densities): an attention-demanding level of
subitizing that is dominant in the range of one to four
items, and a more automatic level of numerosity
estimation which is not limited in range of numbers
(i.e., the whole range) and is dominant for processing of
large numerosities outside the subitizing range (i.e.,
more than four items). Evidence for the difference in
levels of processing of high and low numerosities comes
from studies showing that attention-demanding ma-
nipulations (e.g., dual tasks, attentional blink, WM
load) lead to impaired performance in the subitizing
range but do not affect numerosity estimation (e.g.,
Anobile, Turi, Cicchini, & Burr, 2012; Burr, Turi, &
Anobile, 2010; Olivers & Watson, 2008; Piazza,
Fumarola, Chinello, & Melcher, 2011; Vetter, Butter-
worth, & Bahrami, 2008; X. Xu & Liu, 2008). Thus, it
appears likely that this line of research provides further
support for an automatic, large capacity PM, as an
emergent product of visual perception. It is likely that
the two enumeration processes map onto the same
levels we suggest to underlie VSTM storage.

Predictions and challenges

Several empirical predictions can be derived from
the framework. We will focus here on predictions
based on the premise that two levels of VSTM operate
in parallel: a large-capacity automatically encoded
continuous level (PM) and a selective symbolic level
(visual WM). In general, when set size is supraspan,
some memory items are encoded only in PM, while
three or four are represented in visual WM as well.
The likelihood that a probed item would be repre-
sented only in PM increases with set sizes. Therefore,
markers of PM representations are expected to be
stronger at large set sizes compared to small set sizes,
while markers of visual WM are expected to be
stronger at small versus large set sizes. If retro-cues are
signals for gating items to visual WM, then perfor-
mance should be based primarily on visual WM
regardless of set size.

Automaticity

One marker of PM representations, we argue, is that
they give rise to automatic effects. Therefore, we
predict that effects of automaticity would interact with
set size. For example, the effect of ensemble statistics
would be small for at-capacity set sizes but would
increase with set size. Moreover, this interaction is

expected to dissolve under retro-cue conditions. This
prediction receives preliminary support from Wilken
and Ma’s (2004) finding of an interaction between set
size and reproduction error in a delayed-estimation
task with Gabor patches, where a bias toward the mean
frequency of the display grew larger as set size
increased (but it should be mentioned that they did not
find a similar bias in delayed-estimation of colors or
orientation).

Updating

Following the same line of thought, another
prediction derived from this framework is that when
the content of VSTM needs to be updated, two
updating processes are expected to emerge: controlled
updating of relevant information in visual WM and
automatic-obligatory updating of PM. Rac-Lubashev-
sky and Kessler (2016b) recently found evidence for
automatic and controlled updating processes using the
reference-back task, a variant of the n-back paradigm
in which two types of trials were introduced: reference
trials and comparison trials. Participants were asked to
indicate whether each stimulus matched the last
reference stimulus. In reference trials, they had to
update the content of WM in order to compare the next
stimuli to this item. However, in comparison trials they
were required only to compare the presented stimulus
with the reference item, without replacing it. Findings
revealed that trial history (four trials backward)
affected performance in both comparison and reference
trials, and that reference trials had an additional
additive cost in performance, reflecting WM updating.
These findings indicate that short-term representations
of stimuli presented over the last trials continued to
affect performance even when those items were not
encoded into WM, and (following the logic of additive
factors; compare Sternberg, 1969) this automatic
updating occurred in a different level of processing
than controlled updating (for additional evidence, see
Kessler, 2018). Future studies should attempt to
combine similar methods with VSTM paradigms in
order to examine whether sequential effects are additive
to controlled updating when updating visual short-term
memoranda.

Combination of continuous and categorical
representations

In addition, according to our framework two types
of representations are maintained—analog/continuous
(PM) and symbolic/categorical (visual WM). This
characteristic leads to the prediction that when
performance on the delayed-estimation task is mod-
eled, a combination of continuous and categorical
representations should be evident. As already argued,
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this characteristic is evident in delayed-estimation
performance in general. However, a more specific
prediction can be made: Items in at-capacity sets should
be represented by both types of representations, while
in supracapacity sets some items should be only
continuous (without a category-center bias, but also
with less precision).

In a recent study, Hardman et al. (2017) asked
participants to perform a sequential version of the
delayed-estimation task in which memory items were
presented one by one and participants were asked after
the retention interval to reproduce the colors of all
memory items. The researchers modeled participants’
responses and found that a model in which items could
be represented either categorically or continuously fit
performance better than a model in which they could
be represented both ways (i.e., as in Bae et al., 2015).
Furthermore, they found that only one item was
represented continuously and not categorically. These
findings are not in agreement with our predictions, and
are also contradictory to the results of Bae et al. (2015).
It is possible that the sequential presentation and
probing in the experiments by Hardman et al. may have
affected their findings by eliciting sequential effects,
such as primacy and recency, or eliciting a higher
susceptibility to interference (which we suggest should
primarily affect continuous PM-based representations).
Thus, further studies and analyses based on serial order
should be conducted in order to settle the differences
between the findings of Hardman et al. and Bae et al.,
and to examine whether our prediction receives
empirical support. In addition, response patterns
associated with continuous and categorical represen-
tations should be examined in larger set sizes as well, in
order to distinguish between PM and visual WM
representations.

Challenges and open questions

Although ideal performance in VSTM tasks would
be based on a combination of visual WM and PM
representations, it is possible that under certain
conditions one level is more dominant than the other.
For example, the change-detection task usually requires
making gross same/different judgments, and thus
performance on this task is likely to tap mainly the
discrete aspect of these structures. On the other hand,
the delayed-estimation task requires reporting specific
features’ values, and thus is likely to tap mostly the
continuous-analog aspects of these structures, although
it is also affected by the discrete aspect (as evident in
category bias). In the delayed-estimation task, it is
likely that some responses would be WM based and
some would be PM based, depending on whether the
probed item was represented in WM or not. WM-based
responses should be fast, relatively precise, but biased

toward category center. PM-based responses should be
slower, biased toward summary statistics and stimuli
history, and with increased rate of swap errors.
However, because the two mechanisms act in parallel,
there are several possibilities for their combined effect
on performance, depending on whether they compete
(and in what manner) or interact with one another. An
empirical challenge would be to disentangle the
contribution of each level to performance on both
tasks, and reveal the relations between the two retrieval
processes. One way to examine this question is to
examine the fit of mixture models to accuracy data
(including a swap-error parameter) separately for trials
with fast and slow RTs. Another line of inquiry can
involve adapting the system factorial technology (SFT)
logic to VSTM tasks, in order to examine whether the
two retrieval processes compete in horse-race, parallel
exhaustive, or coactivation architectures.

Another empirical challenge is to understand how
individual differences at each level of the hierarchy
affect capacity estimates. Vogel et al. (2005) found that
individuals with low visual WM capacity have poor
control over the content of WM compared to high-
capacity individuals, indicating that some of the
individual differences in capacity stem not from the
number of retained items but rather from regulation of
the content of VSTM (see also Gaspar et al., 2016). In
our framework, this could be manifested either in
allocation of activation in PM (e.g., in top-down
weights related to task relevance) or in inefficient
selection of items based on these maps to enter visual
WM.

Finally, another open question concerns how the two
levels map onto LTM encoding and retrieval. Specif-
ically, a question to be raised involves whether PM
representations can be encoded to episodic LTM and in
what form. One possibility is that PM representations
can be retained as episodic traces that contain little
contextual information, depending on each item’s level
of activation in the priority maps, while visual WM
items are encoded with stronger binding to context. If
PM items are retained in the form of contextless
episodic traces, one would expect that PM representa-
tions would be associated with familiarity-based
retrieval, while visual WM representations would be
associated with recollection-based retrieval (e.g., Di-
ana, Yonelinas, & Ranganath, 2007).

Conclusions

In this article we argued for a hierarchical architec-
ture of VSTM, composed of two levels of representa-
tion: perceptual memory, storing analog
representations of visual stimuli in varying activation
levels, and visual WM, storing digital conceptual
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representations of a subset of three or four items from
PM and binding them to their context. While PM has a
large capacity, is relatively nonselective, and gives rise
to automatic effects, visual WM is restricted in the
number of items that can be maintained simulta-
neously, and its content is regulated by a gating
mechanism. Because items can be represented in both
PM and visual WM, capacity allocation may appear as
either discrete/quantized or continuous, depending on
the task requirement and the exact method used to
measure VSTM. Thus, our framework reconciles the
mixed findings regarding whether VSTM is quantized
or not.

Keywords: visual working memory, discrete capacity,
shared-resource models, embedded components,
conceptual representations
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